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ABSTRACT: The investigation of new food constituents for purposes of disease prevention or health promotion is an area of
increasing interest in food science. This paper proposes a new system that allows for simultaneous estimation of the multiple health-
promoting effects of food constituents using informatics. The model utilizes expression data of intracellular marker proteins as
descriptors that reply to stimulation of a constituent. To estimate three health-promoting effects, namely, cancer cell growth
suppression activity, antiviral activity, and antioxidant stress activity, each model was constructed using expression data of marker
proteins as input data and health-promoting effects as the output value. When prediction performances of three types of
mathematical models constructed by simple, multiple regressions, or artificial neural network (ANN), were compared, the most
adequate model was the one constructed using an ANN. There were no statistically significant differences between the actual data
and estimated values calculated by the ANNmodels. This system was able to simultaneously estimate health-promoting effects with
reasonable precision from the same expression data of marker proteins. This novel system should prove to be an interesting platform
for evaluation of the health-promoting effects of food.
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’ INTRODUCTION

Health-promoting effects of foods have recently attracted the
attention of researchers because foods have the potential to
prevent disease and promote health in ways not anticipated by
traditional nutrition science. The potential of foods for disease
prevention is supported by literature papers including a prospec-
tive cohort study in Japan in which the consumption of fruits was
associated with a lower risk of cardiovascular disease1 and a
higher intake of total fruits and vegetables was associated with a
dose-dependent decrease in the risk of esophageal squamous cell
carcinoma.2 In another epidemiologic study on fruit and vege-
table intake and cancer risk, a meta-analytic approach to evaluate
evidence from a case-control and prospective study suggests a
protective effect of both fruits and vegetables toward reducing
the risk of cancer.3 Moreover, fruits and vegetables are rich in
polyphenols, and their effects in the prevention of various dis-
eases are widely supported by observations of epidemiological
studies, experimental studies on animals or cultured human cell
lines, and clinical studies.4

There are many health-promoting effects of food that should
be evaluated, for example, antioxidative activity,5,6 antimutagenic
activity,7�9 and cancer cell growth suppression activity.10�12

In addition, some natural products and constituents have multiple
health-promoting effects. For instance, catechins, contained in
tea, are shown to possess multiple health-promoting effects in-
cluding prevention of cancer13 and cardiovascular disease,14

antioxidant or pro-oxidant activities,15 and antiobesity, antidiabetic,16

and anti-inflammatory effects.17 Thus, when food constituents

are investigated for their potential effects, optimal approaches
will include the capability to screen for multiple effects at once,
thus saving both time and labor.

In the field of drug discovery, identification of new drug
candidates employs the use of not only in vitro assays such as
cell-based assays,18 but also in silico assays such as computational
methods.19�22 In silico assays are useful for the assessment of
pharmacokinetics, toxicity, and pharmacological effects. Also,
they are beneficial for narrowing the number of compounds that
need to be subjected to chemical assays, thus saving time and
money. Computational approaches such as analysis of quantita-
tive structure�activity relationships (QSAR)23,24 and artificial
neural networks (ANN)25,26 have been applied to search for a
food with a single health-promoting effect on a specific target
molecule. To achieve this rapidly and cost effectively, a new
screening system using an in silico assay is proposed to evaluate
multiple health-promoting effects of food simultaneously.

’MATERIALS AND METHODS

FoodConstituents, Drugs, and Food Extracts.The tested food
constituents were as follows: lipoic acid, curcumin, resveratrol, epigallo-
catechin-3-gallate (EGCG), arachidonic acid, epigallocatechin (EGC),
kaempferol, chlorogenic acid, galangin, and linoleic acid (Sigma-Aldrich

Received: May 10, 2011
Revised: July 8, 2011
Accepted: July 11, 2011



8576 dx.doi.org/10.1021/jf201836g |J. Agric. Food Chem. 2011, 59, 8575–8588

Journal of Agricultural and Food Chemistry ARTICLE

Co., St. Louis, MO); glycitein, quercetin, γ-aminobutyric acid (GABA),
and capsaicin (Wako Pure Chemical Industries, Ltd., Osaka, Japan);
cis-9,trans-11 conjugated linoleic acid (CLA), and trans-10,cis-12 CLA
(Cayman Chemical Co., Ann Arbor, MI); cyanidin, pelargonidin, and
delphinidin (Extrasynth�ese, Genay, France); genistein (Wako Chemicals,
USA, Inc., Dallas, TX); daidzein (Fujicco Co., Ltd., Kobe, Japan);
rosmarinic acid (MP Biomedicals, Inc., Irvine, CA); and benzyl isothio-
cyanate (BITC) (TokyoChemical Industry Co., Ltd., Tokyo, Japan). The
tested drugs were as follows: simvastatin, lovastatin, and pravastatin
(Wako Pure Chemical Industries, Ltd.); fluvastatin and atorvastatin
(Toronto Research Chemicals, Inc., North York, Canada); ribavirin
(MP Biomedicals, Inc.); and interferon-R 2b (Prospec-Tany Technogene
Ltd., Rehovot, Israel). Edible plants collected in Miyazaki, Japan, were as
follows: leaves and roots of Japanese radish (Raphanus sativus); roots of
burdock (Arctium lappa); leaves of carrot (Daucus carota), spearmint
(Mentha spicata), rosemary (Rosmarinus officinalis), lemon balm (Melissa
officinalis), stevia (Stevia rebaudiana), sweet basil (Ocimum basilicum),
green tea (Camellia sinensis), and blueberry (Vaccinium virgatum). Each
sample of lyophilized powder (1 g) was extracted by vortexing for 30 s
with 80% ethanol (30 mL), whereas blueberry leaf powder was extracted
with 80% ethanol or hot water. The extracts were filtered through filter
paper (filter paper no. 2, Toyo, Tokyo, Japan), concentrated with a
vacuum evaporator, and completely dried with a freeze-dryer. The lyo-
philized extracts were redissolved in dimethyl sulfoxide.
Cells. The human hepatocellular carcinoma cells HepG2 were

maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-
Aldrich Co.) supplemented with 10% fetal calf serum (FCS) and 1%
penicillin/streptomycin (Sigma-Aldrich Co.). HCV replicon cells,
human hepatoma HuH-7 cells carrying a HCV subgenomic replicon de-
rived from the genotype 1b isolate Con1,27 were maintained in DMEM
supplemented with Glutamax (Invitrogen, Carlsbad, CA), 10% FCS, 1%
penicillin/streptomycin (Invitrogen), and 500 μg/mL of G418 (Invi-
trogen). HepG2/ARE cells, in which a luciferase-based ARE reporter
construct derived from human NAD(P)H dehydrogenase [quinone] 1

(NQO1) was stably transfected, were established bymodifications of the
method of Boerboom et al.28 The cells were maintained in DMEM
(Sigma-Aldrich Co.) supplemented with 10% FCS, 1% penicillin/
streptomycin (Sigma-Aldrich Co.), and 500 μg/mL of G418 (Sigma-
Aldrich Co.). All cells were maintained in a humidified atmosphere
containing 5% CO2 at 37 �C.
Measurement of the Expression Levels of Marker Pro-

teins. HepG2 cells were seeded into 100 mm tissue culture dishes at
3� 105 cells/mL and incubated for 24 h. Subsequently, the mediumwas
replaced with one containing a food constituent or extract. After expo-
sure for 24 h, cells were washed with cold phosphate-buffered saline
(PBS), solubilized with ice-cold lysis buffer (1 mM EDTA, 0.005%
Tween 20, and 0.5% Triton-X-100 in PBS) containing protease inhibitor
cocktail (Roche, Basel, Switzerland). The protein concentrations of the
cell lysates were measured by DC protein assay (Bio-Rad Laboratories,
Hercules, CA), and then the sample was set to 1 mg/mL. Then, the 14
kinds of marker proteins were measured by sandwich enzyme-linked
immunosorbent assay (ELISA) to detect the intracellular response gene-
rated by the food constituent or extract. Measured proteins were as
follows: thioredoxin, survivin, heat shock protein 70 (Hsp70), X-linked
inhibitor of apoptosis protein (XIAP), Fas-associated death domain
protein (FADD), thioredoxin reductase 1 (TXNRD1), heat shock
protein 90 (Hsp90), IFN-inducible antiviral protein Mx (MxA), tumor-
associated hydroquinone oxidase (tNOX), NQO1, tumor suppressor
p53 (p53), extracellular signal-regulated kinase 2 (ERK2), B-cell lympho-
ma 2 (Bcl-2), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Table 1 shows the kits or combinations of antibodies used in sandwich
ELISA to detect each marker protein. Microtiter plates (96 well) were
coated with 100 μL of capture antibody in 50 mM carbonate buffer
(pH 9.6) and incubated overnight at 4 �C. The plates were blocked with
300 μL of 5% skim milk in PBS and incubated overnight at 4 �C.
Subsequently, the cell lysates (100 μL) were added into each well and
incubated for 2 h at 37 �C. All of the cell lysates were analyzed in
duplicate. The plates were incubated with 100 μL of detection antibody

Table 1. Antibodies Used for ELISA

marker protein capture antibody detection antibody secondary antibody

thioredoxin mouse mAba

(Serotec, Oxford, U.K.)

goat pAbb

(R&D Systems Inc., Minneapolis, MN)

mouse pAb, peroxidase conjugated

(Pierce, Rockford, IL)

survivin mouse mAb

(established)

goat pAb

(R&D Systems Inc.)

mouse pAb, peroxidase conjugated

(Pierce)

FADD rabbit pAb

(USBiological, Swampscott, MA)

mouse mAb

(BD Transduction Lab, San Diego, CA)

goat pAb, peroxidase conjugated

(ICN Pharmaceuticals Inc., Aurora, OH)

TXNRD1 rabbit pAb

(LabFrontier, Seoul, South Korea)

mouse mAb

(Abcam Ltd., Cambridge, U.K.)

goat pAb, peroxidase conjugated

(ICN Pharmaceuticals Inc.)

Hsp90 mouse mAb

(BD Transduction Lab.)

goat pAb

(Santa Cruz Biotechnology, Santa Cruz, CA)

mouse pAb, peroxidase conjugated

(Pierce)

MxA mouse mAb

(KYOWA MEDEX Co.,Ltd., Tokyo, Japan)

biotinylated mouse mAb

(established)

streptavidin, peroxidase conjugated

(GE Healthcare Biosciences, Little Chalfont, U.K.)

tNOX mouse mAb

(established)

biotinylated mouse mAb

(established)

streptavidin, peroxidase conjugated

(GE Healthcare Biosciences)

NQO1 mouse mAb

(Abnova, Taipei, Taiwan)

goat pAb

(IMGENEX Co., San. Diego, CA)

mouse pAb, peroxidase conjugated

(Pierce)

Hsp70 Duoset IC kit (R&D Systems Inc.)

XIAP Duoset IC kit (R&D Systems Inc.)

ERK2 Duoset IC kit (R&D Systems Inc.)

p53 Duoset IC kit (R&D Systems Inc.)

Bcl-2 Duoset IC kit (R&D Systems Inc.)

GAPDH whole-cell normalization kit (Active Motif, Carlsbad, CA)
amAb, monoclonal antibody. b pAb, polyclonal antibody.
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for 1 h at 37 �C, followed by incubation with a secondary antibody. The
peroxidase reaction was initiated by the addition of 100 μL of substrate
solution [0.1 M citrate buffer (pH 4.0) containing 0.003% H2O2, and
0.3mg/mL 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (Wako)].
After 10 min, the absorbance was measured at 405 and 490 nm with
a multichannel microtiter plate reader (Vmax; Molecular Devices,
Redwood City, CA). ELISA data were normalized by comparison with
the absorbance of GAPDH. The relative marker protein expression level
was represented by a relative value in comparison with the control.
Determination of Cancer Cell Growth Suppression Activ-

ity. Cancer cell growth suppression activities for food constituents and
extracts were determined by a cell proliferation assay. HepG2 cells were
inoculated into a 96-well microtiter plate (Corning) at 1� 104 cells/well
and cultured for 24 h. The cells were incubated in the presence or
absence of food constituents or extracts. After 48 h of incubation, the cell
survival rate was measured by theWST-8 [2-(2-methoxy-4-nitrophenyl)-
3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium
salt] cell-counting kit (Dojindo, Kumamoto, Japan) according to the
manufacturer’s protocol. The WST-8 assay is based on a water-soluble
formazan reaction occurring only in viable cells.29 Cancer cell growth
suppression activity was calculated by using the following equation: cancer
cell proliferation rate = (absorbance of test)/(absorbance of control). The
absorbance in the microplate wells was measured at 450 nm with a
multichannel microtiter plate reader (Vmax; Molecular Devices).
Measurement of Antiviral Activity. Antiviral activity was

evaluated by measuring the impact on suppression of HCV replication

using a HCV subgenomic replicon system.27 The HCV replicon cells in
DMEM supplemented with Glutamax and 5% FCS (5� 103 cells/well)
were plated in 96-well plates and were cultured for 24 h. Then, the cells
were treated with each food constituent or extract for 72 h. HCV
replicon levels were determined by the luciferase reporter assay, and the
cell proliferation rate was determined by theWST-8 assay. The luciferase
activity was quantified using the Steady-Glo luciferase assay system
(Promega, Madison, WI) according to the manufacturer’s protocol, and
the luminescence was measured by the DTX 800 multimode detector
(Beckman Coulter, Fullerton, CA). The relative luciferase activity was
represented by the relative value in comparison with the control. Anti-
viral activity was defined as follows: viral replication rate = (relative
luciferase activity)/(cell proliferation rate).
Determination of Antioxidant Stress Activity. Antioxidant

stress activity was evaluated by induction of ARE-mediated gene expres-
sion using a reporter assay.28 The HepG2/ARE cells were inoculated
into 96-well plates at 4 � 104 cells/well. After 24 h of incubation, the
cells were treated with each food constituent or extract for 24 h. The
luciferase activity was quantified using the Bright-Glo luciferase assay
system (Promega) according to the manufacturer’s protocol, and the
luminescence was measured by using a multiplate reader (GENios,
Tecan Japan Co. Ltd., Japan). Luciferase activity and cell prolifera-
tion rate were calculated by using the same method as for antiviral
activity. Antioxidant stress activity was calculated as follows: ARE-
luciferase activity rate = (relative luciferase activity)/(cell proliferation
rate).

Figure 1. Conceptual diagram of the evaluation system to estimate plural health-promoting effects of food constituents from expression levels of
intracellular marker proteins. Training data sets were collected on activity values of health-promoting effect and expression level of intracellular proteins
by using the same food constituents. Then estimation models were constructed using health-promoting effect as the dependent variable or output value
and relative expression of 13 kinds of marker proteins as independent variables or input values. Subsequently, the optimized model was selected in all of
the built models. Finally, activity values of plural health-promoting effects can be estimated simultaneously from the expression data of marker proteins
by the evaluation system.
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Table 2. Training Data Set 1: Marker Protein Expression Rate and Experimental Values of Health-Promoting Effects Used To
Build the Models

marker protein expression rate health-promoting effects

compd

concn

(μM) 1a 2b 3c 4d 5e 6f 7g 8h 9i 10j 11k 12l 13m An Bo Cp

lipoic acid 100 0.613 0.664 0.720 0.592 0.496 0.696 0.580 0.667 0.428 0.565 0.679 0.628 0.626 0.990 0.8957 0.834

300 0.707 0.630 0.772 0.675 0.447 0.896 0.572 0.836 0.500 0.763 0.736 0.625 0.696 1.041 0.4827 1.251

1000 0.966 0.627 0.773 0.999 0.594 1.164 0.699 1.300 1.310 1.460 0.850 0.691 1.009 0.998 0.1178 2.711

EGCG 7 0.878 0.881 0.723 0.768 0.872 0.781 0.714 0.771 0.569 0.967 0.925 0.743 0.762 0.944 1.3515 0.630

20 0.882 0.734 0.589 0.656 0.671 0.694 0.399 0.622 0.446 0.902 0.868 0.609 0.625 0.905 0.9307 0.740

50 1.605 1.119 0.731 1.207 1.008 0.968 0.614 1.070 1.047 1.475 1.300 0.974 0.990 0.870 0.0354 0.672

daidzein 25 0.632 0.627 0.712 0.654 1.121 0.973 0.481 0.672 0.519 0.689 0.735 0.674 0.665 0.958 1.1245 2.891

50 0.528 0.552 0.627 0.577 0.879 1.217 0.514 0.707 0.594 0.848 0.803 0.755 0.702 0.906 1.0149 2.519

150 0.737 0.531 0.717 0.830 0.968 1.153 0.571 0.748 0.717 0.945 0.858 0.942 0.868 0.832 0.5375 1.806

glycitein 10 0.882 0.932 0.821 0.871 1.016 0.935 0.788 0.856 0.555 1.004 0.968 0.820 0.962 1.086 0.8283 0.995

30 0.888 0.739 0.684 0.935 1.256 0.834 0.796 0.788 0.433 0.929 0.954 0.720 0.939 1.044 1.1602 1.476

100 1.652 0.604 0.802 1.343 1.850 0.773 0.679 1.082 0.759 1.129 1.242 1.029 1.379 0.966 0.9859 1.801

quercetin 5 0.844 0.956 0.834 0.780 1.136 0.908 1.109 0.824 0.686 0.922 0.884 0.853 0.838 1.109 0.9532 0.860

15 0.917 0.871 0.741 0.725 0.870 0.810 1.127 0.783 0.757 0.920 0.878 0.843 0.823 1.063 NTq 0.733

60 1.417 1.158 0.674 0.808 0.989 0.604 0.629 0.761 0.873 1.019 0.935 0.980 0.686 0.904 0.4172 2.871

cyanidin 40 0.633 0.749 0.847 0.726 1.134 0.891 0.600 0.742 0.640 0.744 0.798 0.833 0.784 0.983 1.2056 0.538

150 0.536 0.738 0.673 0.658 0.903 0.683 0.459 0.678 0.632 0.854 0.879 0.856 0.739 0.822 0.0391 0.450

400 0.598 0.776 0.784 0.669 0.884 0.797 0.633 0.820 0.631 0.720 0.836 1.094 0.854 0.451 NT 0.538

pelargonidin 100 0.784 0.853 0.983 0.848 1.085 0.916 0.909 0.820 0.529 1.069 0.984 0.756 0.913 1.000 0.7858 0.402

250 1.112 0.907 1.249 0.849 1.150 1.080 1.027 0.879 0.633 1.440 1.310 1.022 1.016 1.025 0.4207 NT

800 1.367 0.617 1.508 0.862 1.071 0.875 0.892 0.571 0.861 1.845 1.411 1.149 1.067 0.902 NT 2.330

delphinidin 15 1.032 0.956 0.995 1.050 1.083 1.020 0.816 1.017 0.521 1.066 1.125 0.924 0.953 0.966 1.0568 0.827

70 1.216 0.871 0.902 1.169 1.256 0.931 0.882 0.842 0.487 0.970 1.163 0.976 0.847 0.847 0.5343 0.717

200 1.251 0.847 0.865 1.238 1.078 0.863 0.753 0.519 0.513 1.132 1.445 1.206 0.614 0.528 NT 1.930

curcumin 4 0.952 0.952 1.003 0.824 1.554 1.400 0.672 0.989 0.776 0.950 0.944 0.977 0.894 1.009 1.1212 1.741

15 1.017 0.685 0.981 0.908 1.288 1.091 0.768 0.894 0.871 1.072 0.999 0.864 0.819 0.994 NT NT

40 2.934 0.692 2.250 1.122 1.963 1.373 0.800 0.898 0.900 1.377 1.155 1.015 0.839 1.021 NT 2.094

GABA 100 0.995 1.255 0.911 1.021 1.390 1.190 1.209 1.064 0.743 0.951 1.177 0.964 1.035 1.002 1.0369 1.247

300 1.143 1.222 0.967 1.085 1.337 1.107 1.058 1.143 0.697 0.778 1.322 1.011 1.177 1.006 1.1237 0.941

1000 1.214 1.185 0.981 1.038 1.326 1.009 1.223 1.391 0.978 0.803 1.305 1.059 1.305 1.032 1.0846 0.788

resveratrol 10 0.724 0.790 0.797 0.851 0.785 0.979 0.622 0.731 0.406 1.049 1.017 0.893 0.914 0.960 NT 2.778

30 0.598 0.778 0.913 0.841 0.705 0.931 0.460 0.647 0.305 1.010 1.009 1.041 0.880 0.858 NT 2.310

80 0.694 0.559 0.946 1.093 0.784 0.727 0.573 0.605 0.673 1.067 1.104 2.406 0.982 0.563 NT 1.172

arachidonic acid 15 1.016 1.041 0.982 0.874 1.139 0.940 1.086 0.891 0.572 0.903 1.128 1.013 0.912 1.030 0.7954 1.277

45 1.294 1.077 1.060 1.007 0.777 1.255 1.022 0.860 0.596 0.940 1.412 1.151 1.019 0.932 0.4984 1.073

100 1.718 0.895 1.032 1.121 1.091 1.111 0.981 0.699 0.823 1.015 1.566 1.199 1.005 0.806 0.0378 0.727

CLA12C 1 0.900 1.016 1.076 0.887 1.153 0.935 1.058 0.823 0.629 0.855 0.891 0.761 0.865 0.959 NT 1.203

3 0.929 1.090 1.132 0.949 1.799 1.009 1.012 0.854 0.987 0.875 0.961 0.931 0.951 0.962 0.7944 1.111
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Table 2. Continued

marker protein expression rate health-promoting effects

compd

concn

(μM) 1a 2b 3c 4d 5e 6f 7g 8h 9i 10j 11k 12l 13m An Bo Cp

10 0.953 1.002 1.021 0.951 1.318 0.986 0.923 1.061 1.048 0.899 0.949 0.926 1.011 0.965 0.1139 1.015

CLA9C 10 1.032 0.887 0.995 1.054 1.183 0.871 1.198 0.883 0.727 0.909 0.974 0.955 0.837 0.898 0.5918 0.552

30 1.054 0.940 0.945 1.026 1.462 0.879 1.151 0.822 0.888 0.860 1.003 0.866 0.917 0.891 0.1460 0.638

100 0.965 0.886 0.842 1.008 0.878 0.865 1.033 0.900 1.058 0.919 0.986 0.826 0.867 0.827 0.0358 0.935

kaempferol 6 0.967 0.987 0.827 0.939 1.349 1.162 0.900 1.003 0.943 1.328 1.376 0.977 0.917 0.981 NTq 0.954

20 1.047 0.998 0.838 0.949 1.466 1.294 0.710 0.983 1.040 1.312 1.468 1.024 0.963 0.928 NT 2.411

60 1.161 0.920 0.744 1.018 1.439 1.187 0.722 1.026 1.110 0.980 1.420 1.203 1.004 0.686 NT 2.924

IFN 100 IU/mL 0.921 0.870 0.843 0.996 1.424 1.240 0.863 2.603 0.665 1.158 1.145 0.898 1.006 1.014 0.0032 0.990

300 IU/mL 1.141 1.176 0.921 1.128 2.165 1.564 1.049 5.268 0.736 1.216 1.269 1.062 1.106 1.005 0.0003 1.433

1000 IU/mL 1.184 1.104 0.946 1.220 1.660 1.504 0.914 6.962 0.973 1.543 1.136 1.054 1.256 1.000 0.0001 1.030

ribavirin 2 μg/mL 1.066 0.903 0.597 0.896 0.966 0.727 0.891 0.730 0.874 1.061 1.025 0.944 1.066 1.043 NT 1.583

10 μg/mL 1.096 0.626 0.549 0.776 1.045 0.655 0.759 0.627 1.009 1.173 1.137 1.475 0.935 0.971 0.4728 2.217

30 μg/mL 1.186 0.479 0.523 0.759 1.180 0.602 0.536 0.800 1.109 1.037 0.939 1.259 0.884 0.926 0.0999 2.282

fluvastatin 7.5 1.006 0.796 0.878 1.019 1.220 0.823 0.709 0.820 0.407 0.969 0.844 0.929 0.868 0.933 0.1470 0.973

15 1.014 0.731 0.741 0.914 1.352 0.679 0.497 0.706 0.274 0.876 0.713 0.735 0.725 0.921 0.0641 0.845

50 1.250 0.715 0.825 1.030 1.262 0.683 0.556 0.844 0.512 0.916 0.809 0.895 0.902 0.788 NT 0.728

atorvastatin 3.5 0.775 0.612 0.859 0.811 0.970 0.834 0.720 0.802 0.511 0.982 1.004 0.733 0.742 1.075 0.5317 1.675

10 0.910 0.707 0.947 1.061 0.926 0.894 0.655 0.861 0.636 1.229 1.240 0.855 0.812 1.027 0.0386 1.396

35 0.942 0.641 0.982 1.095 0.559 0.892 0.715 0.987 0.860 1.192 1.247 1.063 0.943 0.762 NT 1.076

simvastatin 3.5 1.087 0.916 0.869 0.839 1.334 0.853 0.912 0.799 0.885 1.169 1.014 0.765 0.799 1.028 0.8126 1.144

10 1.099 0.886 0.848 0.833 0.969 0.682 0.695 0.826 0.635 1.235 1.096 0.907 0.835 0.949 0.0516 1.003

35 1.590 0.902 1.214 0.938 1.830 1.076 0.673 1.180 1.059 1.236 1.279 1.029 1.019 0.586 NT 0.822

pravastatin 100 1.122 0.820 0.957 0.935 1.126 0.876 0.883 0.915 0.688 1.260 1.208 0.900 0.822 0.926 NT 1.586

300 1.132 0.719 0.903 0.875 0.848 0.781 0.721 0.822 0.620 1.240 1.249 0.856 0.786 0.963 0.8990 1.117

1000 1.212 0.690 0.852 0.981 0.586 0.757 0.666 0.807 0.841 1.230 1.263 0.954 0.787 0.938 0.0402 0.856

chlorogenic acid 20 0.786 0.924 0.716 0.808 1.244 0.969 1.191 0.851 0.472 0.855 0.961 0.810 0.806 0.971 1.0075 0.950

70 0.889 0.981 0.670 0.826 1.513 1.066 1.326 0.985 0.497 0.877 1.076 0.871 0.888 1.001 NT 0.810

200 1.053 1.025 0.794 0.917 1.840 0.998 1.378 1.176 0.785 0.937 1.107 1.054 1.049 0.924 0.5526 0.733

rosmarinic acid 5 0.638 0.673 0.688 0.759 0.604 0.827 0.864 0.822 0.554 0.739 0.881 0.673 0.859 0.949 1.2471 0.771

15 0.550 0.672 0.653 0.885 0.659 0.900 0.795 0.877 0.489 0.757 0.958 0.705 0.855 0.982 1.0712 0.604

50 0.509 0.733 0.587 0.699 0.684 0.780 0.817 0.819 0.729 0.771 0.886 0.774 0.830 0.993 1.3326 0.550

galangin 8 0.856 0.911 0.956 0.998 1.010 1.143 0.626 1.126 0.624 1.023 1.237 0.932 1.105 0.967 1.6717 1.885

15 0.670 0.932 0.840 0.961 1.075 1.084 0.629 1.077 0.662 1.052 1.344 0.954 1.096 0.958 1.6554 1.686

50 0.823 0.703 0.743 1.006 0.818 0.876 0.550 1.065 1.067 1.555 1.374 0.940 1.174 0.665 NT 1.252

capsaicin 10 0.833 1.229 1.009 0.909 3.029 1.147 1.023 1.109 0.793 1.461 1.180 0.937 1.081 0.933 0.6250 0.922

60 1.113 1.246 1.066 0.957 2.759 1.144 1.181 1.131 0.847 1.530 1.272 1.018 1.131 0.860 0.6405 0.947

150 1.518 0.837 0.987 0.952 2.602 1.133 1.252 1.024 1.157 1.665 1.266 1.177 1.357 0.633 NT 0.567

BITC 1.5 1.104 1.089 1.204 0.836 4.098 1.310 1.352 1.113 0.646 1.683 1.346 1.054 1.127 0.925 0.9488 1.271

5 1.459 1.265 2.104 0.915 6.846 1.702 1.639 1.442 0.786 2.615 1.747 1.404 1.484 0.912 0.3782 2.713

15 2.194 1.175 5.002 0.757 4.421 1.440 1.730 0.961 1.051 2.208 1.473 1.427 1.351 0.742 NT NT
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Design of the Evaluation System. A conceptual diagram of the
evaluation system is shown in Figure 1. Three effects were chosen to
estimate the plural health-promoting effects of the food constituents,
namely, cancer cell growth suppression activity, antiviral activity, and
antioxidant stress activity. Mathematically, these estimations were car-
ried out by single linear regression (SLR) or multiple linear regression
(MLR) or by using an ANN as the nonlinear model.
Data Sets. The data sets used in this study consisted of 23 food

constituents, 7 drugs, and 12 food extracts (Tables 2 and 3). These data
were divided into two groups, that is, training and test data sets. To
construct the mathematical models, the training and test data sets were
used to build the model and to verify the performance of the models,
respectively. In addition, two kinds of training data sets were prepared.
Training Data Set 1. Training data set 1 consisted of 21 food con-

stituents and 6 drugs (Table 2). The SLR andMLR were constructed by
training data set 1, and ANN1 was learned by the same data set.
Training Data Set 2. ANN2 was constructed to improve the predic-

tion performance of ANN1 and learned by the data generated from
training data set 1 in Table 2. To avoid overfitting to training data set 1,
the pseudorandom numbers were generated by the random function of
the GNU Compiler Collection and then were added to training data
set 1. A different size of noise was randomly and individually added to the
relative expression of marker proteins and actual value of the health-
promoting effect. Therefore, the additive noise was assumed to mimic
the experimental error. Briefly, when the cells were treated with a certain
concentration of food constituent, i, let mj

i be the relative expression of
marker protein j and let ak

i be the actual value of the health-promoting
effect k. Then, a matrix illustrated by eq 1 was created. Here, N is the
number of all combinations of food constituents and concentration.

m1
1 3 3 3 m1

j 3 3 3 m1
13 a1k

l 3 3 3
l 3 3 3

l l

mi
1 3 3 3 mi

j 3 3 3 mi
13 aik

l 3 3 3
l 3 3 3

l l

mN
1 3 3 3 mN

j 3 3 3 mN
13 aNk

2
666666664

3
777777775

ð1Þ

Next, the average of each column of eq 1 was calculated using eqs 2 and
3, and a matrix illustrated by eq 4 was created.

m̅j ¼ 1
N ∑

N

i¼ 1
mi

j ð2Þ

a̅k ¼ 1
N ∑

N

i¼ 1
aik ð3Þ

½ m̅1 3 3 3 m̅j 3 3 3 m̅13 a̅k � ð4Þ

Then, a noise to be added to mj and ak was generated. The noise, which
generated against relative expression of marker proteins, εj, is uniform

distribution random numbers that satisfy�Rmj e εj e +Rmj. Similarly,
the noise for the actual value of the health-promoting effects, εk0, is
uniform distribution random numbers that satisfy �Rak e εk0 e
+Rak. Here, R, which satisfies 0 e R e 0.1 as cancer cell growth
suppression and antioxidant stress activity or 0 e R e 0.05 as antiviral
activity, is a constant. After some preliminary test runs,Rwas determined
to optimize performance. When the data of P for each certain concentra-
tion of food constituent were synthesized, εj

p or ε0k
pwas the pth noise. The

training data sets including the noise illustrated by eq 5 were created by
repetition processing by the addition of the random numbers tomj

i or ak
i .

m1
1 þ ε11 3 3 3 m1

j þ ε1j 3 3 3 m1
13 þ ε113 a1k þ ε

01
k

l 3 3 3
l 3 3 3

l l

m1
1 þ εp1 3 3 3 m1

j þ εpj 3 3 3 m1
13 þ εp13 a1k þ ε

0p
k

l 3 3 3
l 3 3 3

l l

m1
1 þ εP1 3 3 3 m1

j þ εPj 3 3 3 m1
13 þ εP13 a1k þ ε

0P
k

m2
1 þ ε11 3 3 3 m2

j þ ε1j 3 3 3 m2
13 þ ε113 a2k þ ε

01
k

l 3 3 3
l 3 3 3

l l

m2
1 þ εP1 3 3 3 m2

j þ εPj 3 3 3 m2
13 þ εP13 a2k þ ε

0P
k

l 3 3 3
l 3 3 3

l l

mN
1 þ ε11 3 3 3 mN

j þ ε1j 3 3 3 mN
13 þ ε113 aNk þ ε

01
k

l 3 3 3
l 3 3 3

l l

mN
1 þ εP1 3 3 3 mN

j þ εPj 3 3 3 mN
13 þ εP13 aNk þ ε

0P
k

2
6666666666666666666666666664

3
7777777777777777777777777775
ð5Þ

Test Data Sets. The unused data sets for training, that is, 2 food
constituents, a drug, and 12 food extracts, were used for testing the
performance of the SLR, MLR, ANN1, and ANN2 (Table 3). Unlike the
generated training data set 2, the test data sets did not add noise. To test
whether a wide range of activities in compounds can be estimated by the
mathematical model, two food constituents (genistein and EGC) and a
drug (lovastatin) were used. Genistein has a cancer cell growth sup-
pression activity12,30�34 and a defense effect against oxidative stress.35�43

Lovastatin44�47 has suppression activity againstHCV replication. EGCwas
chosen as compound, which exhibited weak activity against the three
health-promoting effects. Food extracts were used to test for crude samples.
Linear Regression Model. Linear regression models were used to

build models to estimate the three health-promoting effects from
intracellular protein expression in response to stimulation with food
constituents. Simple and multiple linear regressions are the most widely
known modeling methods. The linear regressions relate one dependent
variable y to one (SLR) or several (MLR) independent variables xi by eq 6

y ¼ R þ ∑
n

i¼ 1
βixi ð6Þ

Table 2. Continued

marker protein expression rate health-promoting effects

compd

concn

(μM) 1a 2b 3c 4d 5e 6f 7g 8h 9i 10j 11k 12l 13m An Bo Cp

linoleic acid 20 0.942 1.028 1.102 1.036 1.249 0.941 1.458 0.863 0.682 0.824 0.928 0.714 0.805 0.935 NT 1.199

50 0.970 0.920 1.010 0.987 1.441 1.027 1.476 0.851 0.834 0.912 1.019 0.664 1.051 0.945 0.7219 1.281

150 1.080 0.943 0.942 1.011 1.403 0.995 1.524 0.958 1.004 1.013 1.028 0.586 1.198 0.829 NT 2.901
a 1, thioredoxin. b 2, survivin. c 3, Hsp70. d 4, XIAP. e 5, FADD. f 6, TXNRD1. g 7, Hsp90. h 8, MxA. i 9, tNOX. j 10, NQO1. k 11, ERK2. l 12, p53.
m 13, Bcl-2. nA, cancer cell growth suppression activity. oB, antiviral activity. pC, antioxidant stress activity. qNT, not tested.
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where y, R, βi, and xi represent the dependent variable, intercept, regres-
sion coefficient, and independent variable, respectively. The models were
constructed using health-promoting effect as the dependent variable and
relative expression of marker protein as independent variable (Table 2).
The goodness-of-fit was evaluated by a coefficient of determination (R2)
and root-mean-square error (RMSE). The RMSE was calculated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼ 1
ðypred � yobsÞ2

n

vuuut
ð7Þ

where ypred, yobs, and n represent estimated value, actual value, and
number of samples, respectively. The F test was used to test the signi-
ficance of the established regression equations, and p < 0.05 was accepted
as significant. SLR and MLR analyses were performed by the regression
analysis tool of Microsoft Excel 2003.
ANNModel. ANN is a computerized mathematical model designed

to emulate the architecture of the brain, and it is a powerful nonlinear
modeling technique offering solutions to problems that have not been
clearly formulated. A multilayer feedforward network with a backpro-
pagation learning algorithm was used.48 Every neuron in each layer is
connected to every neuron of the adjacent layer by weighted links. To
estimate with the least possible error, these weights must be adjusted.
The activation function, eq 8, means that the input, yj, into a neuron is
multiplied by its corresponding connection weights, wjk, and summed.
Then, the sum, xk, is transformed using the sigmoid function, eq 9. The
sigmoid function is one of the most commonly used transfer functions.
The calculated value, yk, is the output of the considered neuron. All
neurons in hidden and output layers are calculated similarly. Finally, the
result was sent to the output neuron, and then the estimated value, yk,
was calculated. In eqs 8 and 9, j and k represent hidden and output layers,
respectively.

xk ¼ ∑
j¼ 1

Wjkyj ð8Þ

yk ¼ f ðxkÞ ¼ 1
1 þ e�xk

� �
ð9Þ

Structure of ANN. ANNs used in this paper were three-layer networks
with 13 neurons in the input layer, 5 or 6 neurons in the hidden layer,
and 1 neuron in the output layer. After some preliminary test run, the

number of neurons in the hidden layer was determined to optimize
performance. ANN1 consisted of 5 neurons in the hidden layer, whereas
ANN2 consisted of 6 neurons in the hidden layer. ANNs were con-
structed using the health-promoting effect as the output value and rela-
tive expression of 13 kinds of marker proteins as input data, namely,
TXN, survivin, Hsp70, XIAP, FADD, TXNRD1, Hsp90, MxA, tNOX,
NQO1, ERK2, p53, and Bcl-2 (Table 2). The output variable data (also
called teacher signal) should be normalized into the range from 0 to 1 for
the transfer function using the sigmoid function. Therefore, the values
were normalized by scaling linearly between 0.1 and 0.9 using minima
and maxima.

Verification and Selection of the Optimized ANN. To select the
optimized ANN, the main parameters of the ANNs were optimized. The
range of initial weight was varied from �2 to 2. The learning rate of
ANN1 was varied from 0.2 to 0.6 in steps of 0.1, and the momentum
factor was varied from 0.2 to 0.8 in steps of 0.05. The learning rate of
ANN2 was varied from 0.6 to 0.7 in steps of 0.05, and the momentum
factor was 0.4. An ANN was trained repeatedly until the allowable error
became <0.1 or until the learning epoch reached 40000. Then, the
trained ANN was retested by the training data sets. Additionally, the
ANN was tested against the test data sets that had not been included in
the ANN learning (Table 3). The optimized ANN, which gave the low
RMSE and the high R2, was selected in all of the built ANN.
Comparison of the Prediction Performance of theModels.

To verify the performance of each estimation model, SLR, MLR, ANN1,
and ANN2were examined using test data (Table 3). The goodness-of-fit
was evaluated by R2 and RMSE. The similarity of the actual and esti-
mated values was evaluated by analyzing their medians by the Mann�
Whitney test. The variances of the actual and estimated values were
also compared by Levene’s test. If the p value is >0.05, there is no
significant evidence to conclude that the actual data and the data from
the models differ. All statistical analysis was performed with Systat 13
(Systat Software, Inc., Point Richmond, CA).

’RESULTS

Estimation of Health-Promoting Effects by SLR. In this
study, we have attempted to build models to estimate three
health-promoting effects, namely, cancer cell growth suppression
activity, antiviral activity, and antioxidant stress activity, from
intracellular protein expression in response to stimulation with
food constituents. A SLR model was first used to examine

Table 4. Regression Coefficients and Statistics of the Fits Obtained from SLR Models

cancer cell growth suppression activity antiviral activity antioxidant stress activity

variable intercept regression coeff R2 a RMSEb intercept regression coeff R2 RMSE intercept regression coeff R2 RMSE

TXN 0.965 �0.045 0.016 0.125 1.353 �0.710 0.171**c 0.419 1.032 0.273 0.019 0.684

survivin 0.856 0.073 0.012 0.126 0.667 �0.015 0.000 0.460 1.761 �0.520 0.021 0.684

Hsp70 0.951 �0.033 0.019 0.125 0.834 �0.205 0.010 0.458 0.985 0.362 0.019 0.684

XIAP 1.043 �0.135 0.026 0.125 1.411 �0.833 0.083* 0.441 1.378 �0.074 0.000 0.691

FADD 0.936 �0.012 0.008 0.126 0.699 �0.034 0.005 0.459 1.164 0.112 0.019 0.684

TXNRD1 0.885 0.035 0.004 0.126 0.674 �0.020 0.000 0.460 0.617 0.714 0.052* 0.673

Hsp90 0.882 0.043 0.010 0.126 0.674 �0.023 0.000 0.460 1.588 �0.322 0.017 0.685

MxA 0.899 0.019 0.017 0.125 0.797 �0.129 0.080* 0.442 1.341 �0.029 0.001 0.690

tNOX 1.005 �0.118 0.041 0.124 1.219 �0.800 0.126** 0.430 0.858 0.621 0.038 0.677

NQO1 0.988 �0.064 0.027 0.125 1.146 �0.468 0.101* 0.436 0.666 0.601 0.071* 0.666

ERK2 1.068 �0.136 0.055* 0.123 0.901 �0.232 0.012 0.458 0.772 0.496 0.024 0.682

p53 1.152 �0.246 0.224*** 0.111 1.289 �0.699 0.073* 0.443 0.971 0.360 0.016 0.685

Bcl2 0.987 �0.073 0.010 0.126 0.658 �0.004 0.000 0.460 0.964 0.371 0.009 0.688
a R2, coefficient of determination. bRMSE, root-mean-square error. c *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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whether three health-promoting effects can be estimated by
relative expression of a single marker protein compared with
the control. The models were constructed using the health-
promoting effects as the dependent variable and relative expres-
sion of a marker protein as the independent variable (Table 2).
The regression coefficients, intercepts, and statistics of fits ob-
tained from the SLR models are shown in Table 4. An F test was
used to test the significance of the established regression equa-
tions. The models that had significant explanatory power were
the regression equations using ERK2 or p53 for cancer cell
growth suppression activity; TXN, XIAP, MxA, tNOX, NQO1,
or p53 for antiviral activity; TXNRD1 or NQO1 for antioxidant
stress activity (Table 4). Although the model estimated for
cancer cell growth suppression activity by p53 had the highest

coefficient of determination, R2, in all SLR models, the model
could explain only 22.4% of the total variance. Any SLR models
by a single marker protein had low R2. Therefore, a SLR model
would not be adequate to estimate health-promoting effects by
marker protein expression.
Estimation of Health-Promoting Effects by MLR. SLR

models that estimate health-promoting effects by single marker
protein expression did not have sufficient explanatory power;
thus, we attempted to build a MLR model using 13 marker
protein expressions. Table 5 summarizes the correlation coeffi-
cients between any two descriptors, namely, marker protein
expressions. The mean was 0.372, and the highest correlation
coefficient was 0.720. Thus, significant multicollinearity did not
exist among marker proteins expressions. Then MLR models

Table 5. Correlation Matrix between Marker Protein Expressions as Variables

TXN survivin Hsp70 XIAP FADD TXNRD1 Hsp90 MxA tNOX NQO1 ERK2 p53 Bcl-2

TXN 1

survivin 0.244 1

Hsp70 0.598 0.299 1

XIAP 0.468 0.264 0.053 1

FADD 0.428 0.523 0.609 0.099 1

TXNRD1 0.323 0.511 0.464 0.252 0.617 1

Hsp90 0.294 0.642 0.475 0.176 0.596 0.442 1

MxA 0.097 0.316 0.031 0.341 0.194 0.508 0.136 1

tNOX 0.425 0.193 0.215 0.266 0.224 0.269 0.252 0.180 1

NQO1 0.529 0.272 0.596 0.224 0.720 0.505 0.331 0.228 0.417 1

ERK2 0.520 0.430 0.397 0.515 0.487 0.506 0.350 0.164 0.369 0.681 1

p53 0.321 0.085 0.312 0.295 0.316 0.172 0.083 0.071 0.269 0.412 0.519 1

Bcl-2 0.383 0.466 0.407 0.446 0.614 0.550 0.529 0.363 0.482 0.599 0.622 0.399 1

Table 6. Regression Coefficients and Statistics of the Fits Obtained from MLR Models

cancer cell growth suppression activity antiviral activity antioxidant stress activity

variable intercept regression coeff intercept regression coeff intercept regression coeff

1.060 1.291 0.753

TXN 0.098 �0.310 0.200

survivin 0.086 0.476 �0.789

Hsp70 �0.065 �0.595 �0.388

XIAP �0.205 �1.214 �0.253

FADD �0.049 0.019 0.024

TXNRD1 0.110 0.288 1.552

Hsp90 0.095 �0.235 �0.414

MxA 0.013 �0.159 �0.199

tNOX �0.161 �0.551 0.414

NQO1 0.083 �0.525 0.465

ERK2 �0.112 0.617 �0.189

p53 �0.181 �0.755 0.120

Bcl-2 0.124 2.065 �0.071

R2 0.345**a 0.567*** 0.248

adjusted R2 0.218 0.437 0.095

RMSE 0.102 0.303 0.599

N 81 57 78
a **, P < 0.01; ***, P < 0.001.
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were constructed using health-promoting effect as the dependent
variable and relative expression of 13 kinds of marker proteins as
independent variables, namely, TXN, survivin, Hsp70, XIAP,
FADD, TXNRD1, Hsp90, MxA, tNOX, NQO1, ERK2, p53, and
Bcl-2 (Table 2). The regression coefficients, intercepts, and
statistics of fits obtained from the MLR models are shown in
Table 6. The results of F testing showed that theMLRmodels for
cancer cell growth suppression activity and antiviral activity esti-
mation had significant explanatory power, whereas the MLR
model for antioxidant stress activity was not useful to estimate
activity. The R2 values of the MLR models that had significant
explanatory power were higher than those of the SLR models. In
addition, themodel for antioxidant stress activity had also high R2

in comparison with the SLR models. Furthermore, the RMSE
values from the MLR models were smaller than those of the SLR
models, so that prediction error from anyMLRmodels improved
relative to the SLR models. These results suggest that the use of
multimarker proteins may be appropriate for estimation of
health-promoting effect in comparison with a single marker
protein.
Estimation of Health-Promoting Effects by ANN. Because

the R2 of the MLR models, types of linear models, were low, the
models were not able to adequately explain the total variance.
Therefore, we attempted to build ANN as a nonlinear model.
The ANN models were trained with an error back-propagation
algorithm by using health-promoting effect as the dependent
variable and relative expressions of 13 kinds of marker proteins as
independent variables (Table 2). Optimized parameters and
statistics of fits obtained from the ANN1 models are shown in
Table 7. Compared with the SLR and the MLRmodels, the R2 of
the optimized ANN1 models for three health-promoting effects
were improved. The ANN1models were also improved in RSME
compared with the SLR and the MLR models. These results
suggest that the ANN1models, types of nonlinear models, will be
adequate to calculate health-promoting effects from intracellular
protein expressions.
Comparison of Prediction Performance of the Models by

the External Test Data. Two food constituents, a drug, and
12 food extracts, which had not been used as the training data,
were used as the test data for further external validation of
the models (Table 3). Predictive abilities of the models were

confirmed by the RMSE and theR2 between actual and estimated
values. Statistical differences between actual and estimated values
were evaluated by Mann�Whitney and Levene’s tests. As can be
seen in Table 8, the most adequate values of the RMSE and R2 of
actual and estimated values are reached using the ANN1 models
in each of three health-promoting effects. All of the p values from
Table 8 indicate that there is no significant evidence to conclude
that the actual data and the data from the ANN1 models differ.
Taken together, these results indicate that the most adequate
models to estimate for three health-promoting effects are ANN1
models.
Improvement in Prediction Performance of ANN Models.

ANNmodels based on nonlinear systems were most adequate to
estimate for three health-promoting effects from intracellular
protein expressions. However, prediction performances of the
ANN1 models were not enough to estimate because the training
data might only include a relatively small number of data points
against the number of variables. To improve the prediction per-
formance of the ANN models, ANN2 models were built using
the synthesized training data. Optimized parameters of the
ANN2 models are shown in Table 9. Prediction performances
of the models were verified by the test data, and the estimated
values are shown in Table 3. These results indicated that the
ANN2models gave basically correct estimated values, although a
few exceptional errors between the actual and the estimated
values were observed in the models for antiviral and antioxidant
stress activities. Statistics of fits obtained from the optimized
ANN2 models are shown in Table 9 and Figure 2. The RMSE
and R2 from the ANN2 models were better than those from the
ANN1 models (Table 8) in each of the three health-promoting
effects, so that prediction performances of the ANN2 models
were more improved over those of the ANN1 models. In
addition, all of the p values in Table 9 were >0.05, demonstrating
that there were no statistically significant differences between the
actual data and estimated values calculated by the ANN2models.
Therefore, the ANN2 models have a statistically satisfactory
goodness of fit from the modeling point of view. These results
showed that the most adequate models to estimate for three
health-promoting effects were the ANN2 models that were built
by the synthesized training data. Taken together, the ANN2
models could estimate three health-promoting effects simulta-
neously with reasonable accuracy.

’DISCUSSION

A mathematical model with descriptors of compound struc-
ture and/or physical and chemical characteristics, a QSAR, is
well-known as a means of estimating the physiological and
chemical activity of a compound in the field of pharmacy.49�52

QSAR is an effective prediction method for a single compound of
already known structure; however, it is not suitable for a
functional prediction of food constituents. Often, a test sample
is not an isolated or purified compound; instead, a crude extract
of food is evaluated. In this case, the molecular structure
information of a test compound cannot be used as a descriptor.
Hence, the expression data of marker proteins in the cell
that replied to stimulation by a compound were utilized as the
descriptors in this study. A change in expression level of an
intracellular protein reflects the various phenomena that occur
in a cell. It is known that some marker proteins are related
to pathophysiological functions, for example, caspase family
enzymes53 and p5354 contribute to apoptosis and tumor necrosis

Table 7. Parameters of the Optimized ANN1Models

cancer cell growth

suppression

activity

antiviral

activity

antioxidant

stress activity

number of input

neurons

13 13 13

number of hidden

neurons

5 5 5

number of output

neurons

1 1 1

learning rate 0.80 0.70 0.75

momentum factor 0.3 0.5 0.3

final prediction error

(training data)

R2 0.799 0.954 0.828

RMSE 0.057 0.099 0.294
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factor-R55,56 and interleukin-655,57 contribute to inflammation.
In this study, an empirical modeling method was adopted because
intracellular proteins including ones that have an unknown
relationship to health-promoting effects were assumed marker

proteins. An empirical modeling method is adaptable using
experimental results. The model based on biochemical descrip-
tors was able to estimate health-promoting effects of a test sample
within an allowable error even if the sample was an extract
including a complex mixture of components. Furthermore, if the
expression data of marker proteins are used as common data, it is
expected that activities of plural health-promoting effects can be
estimated at the same time.We evaluated three health-promoting
effects, cancer cell growth suppression activity, antiviral activity,
and antioxidant stress activity, to check whether plural health-
promoting effects could be estimated at the same time. The
model was able to estimate three health-promoting effects from
the data common to plural effects, namely, expression data of
marker proteins that was not used for learning of the model
(Table 3). The estimated values obtained from the model were
similar to the actual values for a wide range of activities. Physio-
logical activities of the previously reported compounds and
extracts were confirmed by the model. For example, genistein
and the rosemary extract have a cancer cell growth suppression
activity,12,30�34 and a defense effect against oxidative stress.35�43

Lovastatin44�47 and blueberry leaf extract58 have suppression
activities against HCV replication. Our results suggest that plural
health-promoting effects of a compound or extract can be esti-
mated from the expression data of marker proteins efficiently.
Using only a single wet experiment, namely, measurement of the
expression level of a cellular protein in response to stimulation by
a test compound, made it possible to estimate multiple health-
promoting effects using a calculation with high accuracy.

Generally, a clinical test involves a single tumor marker, but
there are many cases when a combination of several plural mar-
kers allows a more precise diagnosis. Prostate-specific antigen
(PSA) is the most widely used serum biomarker for early
detection of prostate cancer.59 However, the utility of PSA has

Table 8. Comparison of the Statistical Parameters in the Test Data Using Every Applied Model

cancer cell growth suppression activity antiviral activity antioxidant stress activity

hypothesis testing

(p value)

hypothesis testing

(p value) hypothesis testing

test type R R2 RMSE

Mann�
Whitney

Levene’s

test R R2 RMSE

Mann�
Whitney

Levene’s

test R R2 RMSE

Mann�
Whitney

Levene’s

test

SLR variable

TXN 0.412 0.169 0.126 0.489 0.001 �0.188 0.035 0.604 0.062 0.226 0.408 0.166 0.612 0.027 0.003

survivin �0.434 0.188 0.151 0.734 0.001 0.194 0.038 0.475 0.010 0.000 �0.208 0.044 0.697 0.130 0.001

Hsp70 0.382 0.146 0.131 0.534 0.000 0.148 0.022 0.456 0.008 0.000 0.440 0.194 0.621 0.030 0.000

XIAP 0.516 0.266 0.122 0.319 0.002 �0.225 0.051 0.481 0.025 0.001 �0.487 0.237 0.652 0.040 0.000

FADD 0.350 0.122 0.134 0.681 0.000 0.362 0.131 0.477 0.006 0.000 0.195 0.038 0.639 0.038 0.001

TXNRD1 �0.533 0.284 0.139 0.716 0.000 �0.061 0.004 0.476 0.010 0.000 0.586 0.343 0.612 0.022 0.001

Hsp90 �0.296 0.088 0.141 0.935 0.000 0.235 0.055 0.474 0.010 0.000 �0.410 0.168 0.684 0.056 0.000

MxA �0.450 0.203 0.136 0.630 0.000 �0.341 0.116 0.495 0.004 0.000 �0.224 0.050 0.649 0.040 0.004

tNOX 0.635 0.403 0.112 0.265 0.003 �0.091 0.008 0.485 0.130 0.020 0.522 0.272 0.607 0.018 0.002

NQO1 0.635 0.403 0.124 0.519 0.001 �0.147 0.022 0.470 0.021 0.000 0.515 0.266 0.604 0.024 0.005

ERK2 0.307 0.094 0.125 0.392 0.001 �0.220 0.048 0.479 0.010 0.000 0.134 0.018 0.661 0.021 0.004

p53 0.598 0.357 0.133 0.076 0.631 �0.305 0.093 0.672 0.275 0.335 0.417 0.174 0.618 0.020 0.001

Bcl-2 0.509 0.259 0.127 0.550 0.001 �0.341 0.116 0.478 0.010 0.000 0.404 0.163 0.624 0.036 0.061

MLR 0.520 0.271 0.121 0.474 0.489 �0.104 0.011 0.725 0.647 0.192 0.401 0.161 0.605 0.065 0.999

ANN1 0.750 0.562 0.094 0.519 0.753 0.807 0.651 0.246 0.897 0.470 0.687 0.472 0.552 0.769 0.003

Table 9. Parameters and Statistics of the Fits Obtained from
the Optimized ANN2 Models

cancer cell growth

suppression activity

antiviral

activity

antioxidant

stress activity

number of input

neurons

13 13 13

number of hidden

neurons

6 6 6

number of output

neurons

1 1 1

learning rate 0.70 0.65 0.70

momentum factor 0.4 0.4 0.4

final prediction error

(training data)

R2 0.938 0.959 0.871

RMSE 0.054 0.109 0.284

final prediction

error (test data)

R2 0.714 0.741 0.646

RMSE 0.082 0.209 0.384

hypothesis testing

(p value)

Mann�Whitney 0.286 0.614 0.236

Levene’s test 0.878 0.783 0.382
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been limited by a lack of specificity within the 4�10 ng/mL
range, such that a second biochemical marker, namely, free PSA,
must be measured and the free-to-total serum PSA ratio can be
used to increase specificity.60 Furthermore, according to a recent
paper, a mass spectral serum profiling method that is based on a
multimarker was higher in accuracy, sensitivity, specificity, a posi-
tive predictive value, and a negative predictive value than diag-
nosis by only PSA.61 Our results indicated that the MLR analysis
model using the multimarker had higher prediction accuracy
than the SLR analysis models using the single marker (Tables 4
and 5). If a relationship between a marker protein and a health-
promoting effect does not depend on a protein expression level, it
may be difficult to predict a health-promoting effect only using a
single marker. In addition, it will be difficult to predict a health-

promoting effect only by a single marker when plural mechan-
isms are present for one health-promoting effect. For example,
the antiproliferative effect accompanying apoptosis and/or cell
cycle arrest in cancer cells is regulated by a complex signal
transduction pathway. p53, one of the tumor suppressor genes,
participates in the regulation of cell cycle progression at G1/S and
G2/M phases and induction of apoptosis.54 Genistein enhances
p53 expression in HepG2 cells, and an antiproliferative effect is
shown.32 In this study, genistein enhanced expression of p53 and
had an effect on the antiproliferation of HepG2 cells (Table 3).
However, it is not always true that an antiproliferative effect in
cancer cells is regulated via the p53-dependent pathway. Carno-
sic acid, a component of rosemary, shows an antiproliferative
effect through G2 cell cycle arrest in p53-deficient human
prostatic cancer PC3 cells.62 Additionally, to our knowledge
there have been no previous reports of an antiproliferative effect
through a p53-dependent pathway by rosemary extracts and/or
components such as carnosic acid and carnosol. As shown in
Table 3, an antiproliferative effect was shown by the rosemary
and the Japanese radish leaves, and the expression level of p53
remained unchanged. In this way it would be difficult to evaluate
a health-promoting effect only by a singlemarker, when there was
a large difference in the expression level of the intracellular
protein that was influenced by the different constituents with a
similar health-promoting effect.

ANN was the best among the tested models. Therefore, it
seems that a relationship between health-promoting effects and
expression patterns of marker proteins was nonlinear. Because
expression patterns of intracellular proteins are very complicated,
linear separation may have been difficult. An ANN trained by
error back-propagation48 can resolve a problem that could not be
divided into a linear solution. Therefore, for solution of various
complicated problems, ANN is applied in many fields, for
example, toxicology,63 pharmacy,64 food safety, and quality
analysis.65 ANN, which can solve a complicated problem, would
be suitable for our model that has 13 descriptors of plural marker
protein expression levels.

Although the plural health-promoting effects can be estimated
from the expression data of marker protein, there are still some
points that should be improved. Food constituents used for
training data were biased toward polyphenols. Besides polyphe-
nols of plant origin, food products contain many constituents, for
example, proteins and peptides of animal and marine products
origin, polysaccharides of mushrooms, and fatty acids of animal,
marine, and plant origin. There is a possibility that an estimation
method based on an empirical modeling approach cannot be
estimated precisely in a constituent of the kind that is not learned.
Therefore, the model must be trained using data of various kinds
of food constituents. From the point of view of modeling, if the
number of marker proteins, or descriptors, is increased, the
accuracy of the estimate will rise. However, the number of
necessary data points increases if the number of descriptors
increases, because overfitting occurs when the number of data is
insufficient compared with the number of descriptors. Because it
is difficult to collect enormous amounts of data to prevent over-
fitting, adequate marker proteins should be chosen and unne-
cessary markers should be excluded from the model. Therefore,
in our laboratory we are currently studying ways to choose better
marker proteins.

In conclusion, plural health-promoting effects can be esti-
mated simultaneously from the expression data of marker
proteins. This system will be effective as a prediction model that

Figure 2. Correlation of actual versus estimated values with test data
using the optimized ANN2 models: (a) cancer cell growth suppression
activity; (b) antiviral activity; (c) antioxidant stress activity. The area
between narrow lines expresses the range of the RMSE between actual
and estimated values. The RMSE and the R2 between actual and
estimated values are given in each graph.
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can estimate plural health-promoting effects simultaneously.
Being able to presume plural health-promoting effects by mea-
suring only the expression data of the marker proteins means
they aremore promptly and handily assessable because they need
not be measured by using plural methods. Furthermore, if more
health-promoting effects can be presumed from the expression
data of the marker proteins at the same time, it will be useful as a
first screening method of food constituents for various beneficial
purposes.
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